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Results of modeling of the process of heat transfer from a circular pipe filled with granular bed with allow-
ance for the longitudinal thermal conductivity with boundary conditions of the first and second kind have
been presented. The dependences for calculation of the thermal-stabilization portion and the active heat-ex-
change length that reflect the influence of the hydrodynamic regime of flow of the heat-transfer agent have
been obtained.

Heat exchange from pipes filled with granular bed is known to be a complex multifactor process. The main
problem arising in its description is taking correct account of the influence of the contact thermal resistance of the
wall zone and the hydrodynamic regime of flow of the heat-transfer agent. In [1], the simple dependence

Nuw = 10 (A + 0.0061Re Pr) , (1)

where A = 1.6 (for heat-conducting particles) and A = 1 (for non-heat-conducting particles), has been obtained for cal-
culation of the wall heat-exchange coefficient.

The hydrodynamics of an infiltrated granular bed exerts an influence on the heat exchange by means of sev-
eral parameters: the velocity of the heat-transfer agent and the dispersion coefficients of longitudinal and radial thermal
conductivities of the granular bed. The influence of the radial thermal conductivity has been studied fairly well [1–4],
whereas the influence of the longitudinal thermal conductivity is virtually not understood.

In [5], an effort has been made to calculate the temperature field with allowance for the longitudinal thermal
conductivity. However, it seems impossible to use the results of this paper because of the errors made in solving the
corresponding boundary-value problem.

In this connection, in the present work we sought to model the process of heat exchange with allowance for
the longitudinal thermal conductivity of an infiltrated granular bed in the case of a uniform distribution of the velocity
of the heat-transfer agent in the cross section of a pipe.

Boundary Conditions of the First Kind. Under stationary conditions, for the equation of thermal conductiv-
ity (two-band model) with boundary condition of the first kind on the exterior pipe surface, we have the following
system:
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where K = (1/αw + δm
 ⁄ λm)−1 is the heat-transfer coefficient allowing for the thermal resistance of the wall zone

(1/αw) and the pipe wall (δm
 ⁄ λm).
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In dimensionless form, system (2) will be written as
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Here θ = (T − T0)/(T in − T0).
The solution of (3) was obtained by the method of integral Hankel transformation [6]:
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µn are the roots of the characteristic equation 
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For the heat-transfer coefficient determined by the relation

KΣ = K 
Tr′=1−l ⁄ R − T0

sTt − T0
 , (5)

from (4) with account for l << R and the expression [6]
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we obtain the dependence
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which will be written in dimensionless form as
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To evaluate the influence of the longitudinal thermal conductivity on the heat-transfer coefficient we con-
structed the plots Nu = f (Fo) for different Bi and Pe numbers (Fig. 1). The steady-state value of Nu is seen to be
independent of Pe. Calculation for the case Pe = ∞ (absence of the longitudinal thermal conductivity) was carried out
from the formula yielded by (8):
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.

We note that expression (9) is also yielded by the solution of the corresponding problem in [6], where the
longitudinal thermal conductivity has been disregarded. The series in (9) rapidly converge; therefore, for Fo > 0.5 (this
corresponds to x > 0.5cfρfuR2 ⁄ λr), restricting ourselves to their first terms, we obtain

Fig. 1. Dimensionless coefficient of heat exchange in a circular pipe filled
with granular bed vs. Fo number with boundary conditions of the 1st kind
(calculation from (8)): a) Bi = 0.01; b) 1; c) 100 (1) Pe = 0.01; 2) 0.1; 3) 1;
4) 10; 5) 100; 6) ∞.
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In deriving (10), we have used the relation [1]

µ1 = √2Bi
1 + Bi ⁄ 2.8915

 . (11)

When the Fo numbers are large, we may restrict ourselves to the first term in the series of formula (8), and it will
also be reduced to (10).

To calculate the length of the inlet portion (thermal-stabilization portion) we have obtained, on the basis of a
numerical analysis of the dependences Nu = f (Fo, Pe, Bi), the following formulas:
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The dimensionless temperature average over the cross section is determined as

Fig. 2. Average dimensionless temperature and total dimensionless heat flux vs.
Fo number (a–c, calculation from (13), d–f, from (14)): a and d) Bi = 0.01; b
and e) 1; b and d) 1; c and f) 100. Notation 1–6 is the same as in Fig. 1.
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The influence of the longitudinal thermal conductivity on the average dimensionless temperature is shown in
Fig. 2a–c. It is seen that we have a pronounced cooling of the heat-transfer agent even for small Fo with decrease in
Pe, which is apparently attributable to the influence of the longitudinal dispersion heat flux.

The dimensionless heat flux is calculated from the formula
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Figure 2d–f shows the quantity Q ′ as a function of the governing factors. It should be noted that the total
heat flux removed from the heat exchanger for Fo → ∞ is independent of Pe. This quantity is, apparently, determined
from the balance relation Q∞ = πR2cfρfu(Tin − T0), which, in dimensionless form, will be Q∞

 ′  = 1/(2Bi). The active
heat-exchanger length, within which we have the cooling, increases with decrease in Pe (see Fig. 2d–f). This quantity
is found from the condition

(Q′ − Q∞
′ ) ⁄ Q∞

′  ≤ 0.0001 . (15)

On the basis of a numerical analysis of the dependences Q′ = f(Fo, Pe, Bi), to calculate the active heat-ex-
changer length we have obtained the following formulas:
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The ratio x∗ ⁄ xact characterizing the intensity of heat-exchange processes is of great importance. This quantity
plotted in Fig. 3 reflects the fraction of the active heat-exchanger length on which elevated coefficients of heat transfer
are realized. It is seen that the ratio x∗ ⁄ xact decreases with increase in Pe and, conversely, increases with increase in
Bi. The regularities established may be used in designing heat-exchange apparatuses and in optimizing them.

Fig. 3. Dependence of x∗ ⁄ xact on the Pe number: 1) Bi = 0.01; 2) 0.1; 3) 1;
4) 10; 5) 100.
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Boundary Conditions of the Second Kind. Under stationary conditions, for the equation of thermal conduc-
tivity (two-band model) with boundary condition of the second kind on the exterior pipe surface, we have the follow-
ing system:
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We write (17) in dimensionless form:
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Here θ = (T − Tin)/Tin.
The solution of (18) has been obtained by the method of integral Hankel transformation [6]:
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which is written in dimensionless form as
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without allowance for the influence of the longitudinal thermal conductivity, it is written in the form
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Figure 4 shows the dependence Nu1 = f(Fo) for different values of Pe. On the basis of an analysis of the de-
pendence Nu1 = f(Fo, Pe), we have obtained the following dependence for calculation of the thermal-stabilization por-
tion:
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We obtain Nu1
∗ = 4 for computation of the steady-state value of the heat-transfer coefficient from (22) or (23).

With allowance for the resistance of the wall zone, for the total heat-transfer coefficient, we have
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In steady-state heat exchange, we obtain
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The dimensionless temperature average over the cross section (with allowance for the longitudinal thermal conductiv-
ity) is determined by the formula

sθ′t = 2Fo + 
2

Pe
2 . (27)

Fig. 4. Dimensionless coefficient of heat exchange in a circular pipe filled with
granular bed vs. Fo number with boundary conditions of the 2nd kind (calcu-
lation from (22)). Notation 1–6 is the same as in Fig. 1.
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Figure 5 shows the dependence sθ′t = f(Fo) for different values of Pe. It should be noted that, for low values of Pe

(large coefficients λlong), there are regions in which the dimensionless temperature changes only slightly. This phe-

nomenon is caused by the influence of the dispersion heat reflux directed toward the inlet portion of the pipe



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−λlong 

∂T

∂x




.

CONCLUSIONS

1. The influence of the longitudinal thermal conductivity on the heat-exchange coefficient with boundary con-
ditions of the 1st (8) and 2nd kind (22) has been established.

2. The influence of the longitudinal thermal conductivity on the size of the thermal-stabilization portion (12)
and (24) has been determined.

3. The dependences for calculation of the active heat-exchanger length (16) have been found.
4. The results obtained may be used in calculating and designing heat-exchangers in the form of pipes filled

with granular bed or porous packing.

NOTATION

af, thermal-diffusivity coefficient, m2/sec; Bi = KR/λr, Biot number; cf, heat capacity of the gas (fluid),

J/(kg⋅K); d, particle diameter, m; Fo = (λrx)/(R2cfρfu}) and Foact = (λrxact)/(R
2cfρfu}), Fourier numbers; J0 and J1, Bes-

sel functions of the 1st kind of zero and first orders; l, thickness of the wall zone, m; Nu = KΣR ⁄ λr, Nu1 = α1R ⁄ λr,

and Nuw = αwd ⁄ λf, Nusselt numbers; Pe = (Rcfρfu)/(λlongλr)
1 ⁄ 2, Pe′clet number; Pr = νf

 ⁄ af, Prandtl number; Q =

2πR ∫
0

x

qdx, heat flux removed from the portion of length x, W; Q∞
 ′ , total dimensionless heat flux removed from the

heat exchanger; q, heat-flux density, W/m2; Re = ud/νf, Reynolds number; r, radial coordinate, m; r′ = r/R; R, pipe

radius, m; T, temperature, K; sTt, temperature average over the cross section x = const, K; Tin, temperature of the gas
(fluid) at the pipe inlet, K; T0, ambient temperature, K; u, rate of filtration of the gas (fluid), m/sec; x, longitudinal

coordinate, m; x∗, pipe length on which Nu becomes stabilized (length of the inlet portion), m; xact, active heat-ex-

changer length, m; αw, wall coefficient of heat transfer, W/(m2⋅K); α1 and α, heat-transfer coefficients, W/(m2⋅K);

δm, thickness of the pipe wall, m; θ, dimensionless relative temperature; λf, thermal-conductivity coefficient of the gas

(fluid), W/(m⋅K); λm, thermal-conductivity coefficient of the pipe material, W/(m⋅K); λlong and λr, coefficients of lon-

gitudinal and transverse thermal conductivity of the granular bed, W/(m⋅K); νf, coefficient of kinematic viscosity,

Fig. 5. Average dimensionless relative temperature vs. Fo number (calculation
from (27)). Notation 1–6 is the same as in Fig. 1.
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m2/sec; ρf, density of the gas (fluid), kg/m3. Subscripts and superscripts: act, active; f, medium (gas or fluid); long,

longitudinal; m, pipe material; r, radial; w, wall; Σ, total; in, inlet.
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